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Market risk measurement in practice

Nonlinearity in market risk

Nonlinearity and convexity

Nonlinearity in market risk

� Nonlinearity: P&L or payoff of a security doesn’t respond
proportionally to risk factor returns

� Examples of securities with nonlinear payoffs:
� Options: gamma risk
� Bonds: convexity risk in non-callable as well as callable coupon and

zero-coupon, mortgage-backed securities

� Security value f (St) a function of risk factor St ,

� f (St) has second and nonzero higher derivatives→
� Large-magnitude returns have a proportionally larger or smaller P&L

impact than small returns
� →Price changes in one direction may have a larger P&L impact than

changes in the opposite direction
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Market risk measurement in practice

Nonlinearity in market risk

Nonlinearity and convexity

VaR techniques for nonlinear positions

Simulation with full repricing using asset valuation model, e.g.
Black-Scholes formula

� Can use Monte Carlo or historical simulation of underlying
price or risk factor returns

� But revaluation of position at each simulated return may itself
require “expensive” simulations

Delta-gamma using linear-quadratic approximation of P&L responses to
risk factor returns

� Trades accuracy for speed
� Tractable and quite accurate in many cases
� But may be inaccurate for some portfolios
� Can be combined with Monte Carlo or historical simulation of
risk factor returns
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Market risk measurement in practice

Nonlinearity in market risk

Delta-gamma and option risk

Option risk and the “greeks”

� Option risk stemming from underlying asset price risk is nonlinear
� Price risk of the underlying asset (→delta, gamma)
� Sensitivity to underlying price greatest near strike, may fall off

rapidly in- or out-of-the-money
� →Apply delta-gamma, with f (St) representing option price or value

� Options are exposed to other risk factors, including
� Interest-rate risk or rho, since an option matures at a future date
� Implied volatility or vega risk

� Options have time value that decays over time at a rate theta
� Theta is not a risk, but a deterministic quantity
� Depends on interest rates, implied volatility, and terms of the option
� Particularly high relative to option value for short-term options
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Market risk measurement in practice

Nonlinearity in market risk

Delta-gamma and option risk

Definitions of delta and gamma

Delta δt : rate at which option value changes with underlying asset price

δt ≡ ∂f (St)

∂St

� 0 < δt < 1 for plain-vanilla call option
� −1 < δt < 0, for plain-vanilla put

Gamma γt : rate at which delta changes with underlying asset price

γt ≡ ∂

∂St
δt =

∂2f (St)

∂S2
t

� γt ≥ 0 for a vanilla put or call option
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Market risk measurement in practice

Nonlinearity in market risk

Delta-gamma and option risk

The delta-gamma approximation

� Approximate change in value f (St) of option on 1 unit of underlying
asset—or any security—if St changes by ΔS :

f (St +ΔS)− f (St) ≈ δtΔS +
1

2
γtΔS2

� With other market variables—volatility, risk-free rate, cash flow
rate—held constant

� For vanilla option, f (St) can represent Black-Scholes formula
� St the underlying price
� With implied volatility, risk-free rate and cash flow rate (dividends,

foreign interest, etc.) held constant

� Many other securities have nonlinear responses to changes in a risk
factor that can be described similarly

� For example, bond value can be represented by first- and
second-order sensitivities to interest rates
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Market risk measurement in practice

Market risk measurement for options

Nonlinearity in market risk

Market risk measurement for options
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Market risk measurement in practice

Market risk measurement for options

Applying delta-gamma to the value of an option

Approximating the option return distribution
� Extension of parametric normal VaR approach

� ΔS—change in underlying price—same as in parametric normal VaR
� But f (St +ΔS)− f (St) the change in option value

� Assume arithmetic returns normally distributed:

ΔS

St
∼ N (0, σ2τ)

� Estimate return volatility σ of underlying price

� Quantile zpσ
√
τ represents scenario for future underlying price

return with probability p

� (1 − p)-quantile of change in option value approximated by

δtz1−pσ
√
τSt +

1

2
γt(z1−pσ

√
τSt)

2 for long call option

δtzpσ
√
τSt +

1

2
γt(zpσ

√
τSt)

2 for long put option
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Market risk measurement in practice

Market risk measurement for options

Applying delta-gamma to the value of an option

Delta-gamma VaR for option positions

� Value of an option position: xf (St), with x the number of options
� Apply x > 0 for a long option position, x < 0 for a short position
� Use appropriate signs for δt and γt for P&L of put and call

� τ -period VaR at confidence level α for a long option position:
� Unhedged long call or short put suffers losses when St falls→use z1−α

VaRt(α, τ ) = −x

[
δtz1−ασ

√
τSt +

1

2
γt

(
z1−ασ

√
τSt

)2]

0 < δt < 1, γt ≥ 0, x > 0 for a long call position

� Unhedged long put or short call suffers losses from higher St→use zα

VaRt(α, τ ) = −x

[
δtzασ

√
τSt +

1

2
γt(zασ

√
τSt)

2

]

− 1 < δt < 0, γt ≥ 0, x > 0 for a long put position
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Market risk measurement in practice

Market risk measurement for options

Nonlinearity and option risk

Nonlinearity and option risk

� Underlying price moves amplifies loss for long call or short put

� δt ≥ 0 for a long call, δt ≤ 0 for a long put, so
� Unhedged long call and short put positions behave like long positions

in underlying
� Unhedged short call and long put positions behave like short

positions in underlying
� Large-magnitude δt increases VaR for a long option position

� γt ≥ 0 for a long call or put, so
� Gamma dampens P&L for long option positions and amplifies P&L

for short option positions
� High γt reduces VaR for a long option position and increases VaR for

a short option position
� Difference between P&L results of large and very large underlying

price changes is also greater for short positions
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Market risk measurement in practice

Market risk measurement for options

Nonlinearity and option risk

Nonlinearity and option risk
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Short put

Each panel plots the P&L in currency units of an unhedged option position, using the
Black-Scholes valuation formula.
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Market risk measurement in practice

Market risk measurement for options

Nonlinearity and option risk

Example of delta and gamma calculations

� Short position in at-the-money (ATM) put on one share of
non-dividend paying stock with one month to expiry

� Initial stock price St = 100, money market rate 1 percent, implied
volatility 15 percent

� Short position, so reverse signs of δt and γt

� Model of the underlying price: assume zero drift, lognormal returns

� Assume volatility estimate/forecast 15 percent per annum, equal to
implied vol

� But note historical volatility estimate generally somewhat lower than
implied vol ( volatility premium )

� To compute one-week VaR (τ = 1
52 ), compare option value at initial

underlying price to value in VaR scenario
� P&L: value of 3-week options with shock to underlying price minus

value without shock
� Excludes time decay—which is non-random—from revaluation
� But retain zero-drift assumption on underlying price
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Market risk measurement in practice

Market risk measurement for options

Nonlinearity and option risk

Delta-gamma VaR results

� Black-Scholes delta of 3-week ATM put is -0.4857; gamma is 0.1050
� Short put has delta equivalent of 48.50 worth of stock
� And high gamma: e.g. delta declines to -0.3829 if price rises to 101

� Compute VaR scenarios—quantiles of St+τ for α = 0.95, 0.99
� With σ = 0.15 annually, σ

√
τ = 0.0208

� Delta-gamma results in good approximation for non-extreme
changes in St

� Compare VaR computed using Black-Scholes formula, changing only
underlying price

VaR estimates
VaR scenario delta-only delta-gamma Black-Scholes

α = 0.95 -3.422 1.662 2.276 2.250
α = 0.99 -4.839 2.350 3.579 3.465
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Market risk measurement in practice

Market risk measurement for options

Nonlinearity and option risk

Delta and delta-gamma approximations
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Black-Scholes δ approximation δ-γ approximation

Short put option struck at 100, initial underlying asset price 100, money market rate 1
percent, valued using Black-Scholes formula.
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Market risk measurement in practice

Portfolio VaR

Nonlinearity in market risk
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Algebra of portfolio VaR
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Market risk measurement in practice

Portfolio VaR

Algebra of portfolio VaR

Most VaR applications involve portfolios
� Multiple risk factors and/or multiple positions, e.g.

� Hedged positions
� Relative value trades such as spread trades
� More general portfolios of long and short positions
� Portfolio products such as structured credit

� Introduces additional complications to convexity:
� Need to take account of correlations of risk factor returns

� May have P&L that is nonmonotone with respect to a risk factor’s
returns

� Sign of ∂f (St )
∂St

may change with St

� Example of nonmonotonicity: delta-hedged options, exposed to
gamma

� Long gamma: largest losses for smallest underlying returns

� Delta-normal: simple approach to computing portfolio VaR for
market risk

� But may be drastically inaccurate for some portfolios, e.g.
delta-hedged options
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Market risk measurement in practice

Portfolio VaR

Algebra of portfolio VaR

Parametric computation of portfolio VaR

� Apply algebra of portfolio returns to sequence of computations of
parametric single-position VaR

� Assume logarithmic risk factor returns jointly normal

rt = (r1,t , r2,t , . . . , rn,t)
′

� Risk factor returns have time-varying variance-covariance matrix Σt

� Portfolio volatility with portfolio weights on risk factors an
n-dimensional vector w:

σt = w′Σtw

� VaR in return terms at confidence level α equal to zασt
√
τ
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Market risk measurement in practice

Portfolio VaR

Algebra of portfolio VaR

Estimating the covariance matrix

� Compute volatilities and correlations of the n risk factors from the
variances and covariances constituting Σt

� Can be estimated via EWMA, with a decay factor λ, via

Σt =
1− λ

1− λm

m∑
τ=1

λm−τ r′trt

≈ λΣt−1 + (1− λ)r′trt

� r′trt an outer product of return vector on date t
� Square matrix with same dimension as Σt

� VaR in return terms at confidence level α equal to zασt
√
τ
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Market risk measurement in practice

Portfolio VaR

Algebra of portfolio VaR

Two-position portfolio

� Two positions or risk factors: 3 parameters to estimate

Σt =

(
σ2
1,t σ1,tσ2,tρ12,t

σ1,tσ2,tρ12,t σ2
2,t

)

� Return volatility of a two-position portfolio

σ2
t = w 2

1σ
2
1,t + w 2

2σ
2
2,t + 2w1w2σ1,tσ2,tρ12,t
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Market risk measurement in practice

Portfolio VaR

Example of portfolio VaR

Long-short currency trade

� Long EUR and short CHF against USD, potentially motivated by
view that

� Extremely sharp safe-haven appreciation of CHF relative to EUR
since beginning of global financial crisis economically unsustainable

� “Risk-on” strategy: global recovery, decrease in uncertainty and risk
aversion will reverse CHF appreciation

� Weights are 1 and -1

� Measure of risk at time t is

(1,−1)Σt

(
1

−1

)
= σ2

1,t + σ2
2,t − 2σ1,tσ2,tρ12,t

� VaR expressed as quantile of USD portfolio loss relative to market
value of one side of the trade
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Market risk measurement in practice

Portfolio VaR

Example of portfolio VaR

EUR-USD and USD-CHF risk parameters 2015-2016

Oct Jan Apr Jul Oct

1.06

1.08

1.10

1.12

1.14

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

EU
R

CH
F

Jan Apr Jul Oct

0.4

0.6

0.8

1.0

1.2

1.4

0.75

0.80

0.85

0.90

vo
la
til
ity

(daily
,p

er
ce
nt
)

re
tu
rn

co
rr
el
at
io
n

EUR vol CHF vol correlation

EUR-USD and USD-CHF exchange rates,
daily, 30Sep2015 to 30Sep2016. USD-CHF
rates on an inverted scale.

Return volatilities and correlation of
EUR-USD and USD-CHF exchange rates,
daily, 28Oct2015 to 30Sep2016. Estimated
via EWMA with decay factor λ = 0.94.
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Market risk measurement in practice

Portfolio VaR

Example of portfolio VaR

Long EUR-USD versus short USD-CHF risk and
returns 2015-2016

Jan Apr Jul Oct
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Cumulative returns on a portfolio consisting of a long position in EUR and position in
CHF against USD, daily, 30Sep2015 to 30Sep2016.
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Market risk measurement in practice

Portfolio VaR

Delta-normal approach to VaR computation

Delta-normal VaR

� Delta-normal VaR: form of parametric VaR

� Simplification of VaR by means of two approximations:
� Linearize exposures to risk factors
� Treat arithmetic, not log returns, as normally distributed

� Letting f (St) now represent the value of a security not necessarily an
option, delta δt defined as the derivative or value w.r.t. risk factor:

δt ≡ ∂f (St)

∂St

� δt may be positive or negative, > 1 in magnitude
� How many deltas and how they are measured depend on modeling

choices: St may be a vector

� Limitations: doesn’t capture convexity, other non-linearities
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Market risk measurement in practice

Portfolio VaR

Delta-normal approach to VaR computation

Delta equivalents

� Delta equivalent xδtSt of a position
� Or δtSt per unit

� Measure of exposure, states how position affected by unit underlying
risk factor return

� Delta equivalent plays crucial role in hedging option risk
� At underlying price St , position of x options with δt has same

response to small price change as underlying position xδtSt
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Market risk measurement in practice

Portfolio VaR

Delta-normal approach to VaR computation

Delta-normal VaR for a single position

� In many cases δt = ±1
� If risk factor identical to the security

� Often the case for major foreign currencies, equity indexes
� δt = −1 for short position

� Value of a security varies one-for-one with risk factor
� E.g. local currency value of foreign stock as function of exchange rate

� Delta-normal VaR for a single position exposed to single risk factor
at confidence level α:

VaRt(α, τ)(x) = −z1−ασ
√
τxδtSt

� Identical to approximation for single long position parametric VaR
� For short position, uses z1−α rather than zα, offset by δt = −1
� Normality rather than lognormality of returns⇒long and short

positions have identical VaR

� Single position exposed to several risk factors (→portfolio VaR)
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Market risk measurement in practice

Market risk in insurance

Nonlinearity in market risk

Market risk measurement for options

Portfolio VaR

Market risk in insurance
Annuities and market risk
Inflation risk
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Market risk measurement in practice

Market risk in insurance

Annuities and market risk

Types of annuities

� Annuities are contracts for exchange of a specified sequence of
payments between an annuitant and intermediary, generally an
insurance company

� Very wide variety of types

� Payments by annuitant may be a lump sum or periodic over a future
time interval

� Annuities with periodic future payments may lapse or include early
surrender penalties

� Payments by insurance company may be fixed or vary:

Fixed annuity: payments or interest rate fixed over time
Variable annuity: payments vary with return on a specified

portfolio, generally equity-focused

� Annuities may include guarantees by insurance company, such as
guaranteed minimum benefits
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Market risk measurement in practice

Market risk in insurance

Annuities and market risk

Risks of annuity issuance
� Market risks interact with risks arising from guarantees and
policyholder behavior

� Variable annuities generally provide guaranteed minimum return
� Economically equivalent to sale of put option on equity market by

insurer to policyholder
� Annuity is underpriced if value of put not fully incorporated

� Large losses to U.S. insurers in 2008
� Hartford Life became a Troubled Asset Relief Program (TARP)

recipient

� Fixed annuity issuance exposed to convexity risk
� Assets generally duration-matched to liabilities
� But liabilities exhibit greater convexity due to guarantees and

policyholder behavior
� Economically equivalent to sale of put option on bond market by

insurer to policyholder

� Rising interest rates: early surrender optimal→duration falls rapidly
� Falling interest rates: minimum guaranteed rate in effect→duration
rises rapidly
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Market risk measurement in practice

Market risk in insurance

Inflation risk

Inflation risk

� Inflation rate risk is the risk of loss from a rise in the general price
level

� Directly affects securities with payoffs defined in nominal terms
� Indirectly affects real assets by affecting macroeconomic conditions

� Inflation difficult to hedge
� Inflation-indexed bonds have yields defined in real terms
� Inflation swaps and other derivatives
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Market risk measurement in practice

Market risk in insurance

Inflation risk

Insurance company exposure to inflation

� Insurers may benefit from inflation

� Long-term liabilities generally defined in nominal terms
� Generally not fully hedged against changes in interest rates
� And substantial allocation to real assets: real estate, equities

� Permanent risk in inflation rate reduces real value of liabilities

32/32


	Nonlinearity in market risk
	Nonlinearity and convexity
	Delta-gamma and option risk

	Market risk measurement for options
	Applying delta-gamma to the value of an option
	Nonlinearity and option risk

	Portfolio VaR
	Algebra of portfolio VaR
	Example of portfolio VaR
	Delta-normal approach to VaR computation

	Market risk in insurance
	Annuities and market risk
	Inflation risk


